Inexact subgradient methods for quasi-convex optimization problems

نویسندگان

  • Yaohua Hu
  • Xiaoqi Yang
  • Chee-Khian Sim
چکیده

In this paper, we consider a generic inexact subgradient algorithm to solve a nondifferentiable quasi-convex constrained optimization problem. The inexactness stems from computation errors and noise, which come from practical considerations and applications. Assuming that the computational errors and noise are deterministic and bounded, we study the effect of the inexactness on the subgradient method when the constraint set is compact or the objective function has a set of generalized weak sharp minima. In both cases, using the constant and diminishing stepsize rules, we describe convergence results in both objective values and iterates, and finite convergence to approximate optimality. We also investigate efficiency estimates of iterates and apply the inexact subgradient algorithm to solve the Cobb-Douglas production efficiency problem. The numerical results verify our theoretical analysis and show the high efficiency of our proposed algorithm, especially for the large-scale problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bundle Methods for Convex Minimization with Partially Inexact Oracles

Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles may save work by evaluating the dual function appr...

متن کامل

New results on subgradient methods for strongly convex optimization problems with a unified analysis

We develop subgradientand gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient methods which yields two kinds of methods, namely, the Proximal Gradient Method (PGM) and the Conditional Gradient Method (CGM), unifying several existing methods. The unifying framewor...

متن کامل

On the convergence of conditional epsilon-subgradient methods for convex programs and convex-concave saddle-point problems

The paper provides two contributions. First, we present new convergence results for conditional e-subgradient algorithms for general convex programs. The results obtained here extend the classical ones by Polyak [Sov. Math. Doklady 8 (1967) 593; USSR Comput. Math. Math. Phys. 9 (1969) 14; Introduction to Optimization, Optimization Software, New York, 1987] as well as the recent ones in [Math. P...

متن کامل

An optimal subgradient algorithm for large-scale bound-constrained convex optimization

This paper shows that the OSGA algorithm – which uses first-order information to solve convex optimization problems with optimal complexity – can be used to efficiently solve arbitrary bound-constrained convex optimization problems. This is done by constructing an explicit method as well as an inexact scheme for solving the bound-constrained rational subproblem required by OSGA. This leads to a...

متن کامل

Rescaled proximal methods for linearly constrained convex problems

We present an inexact interior point proximal method to solve linearly constrained convex problems. In fact, we derive a primal-dual algorithm to solve the KKT conditions of the optimization problem using a modified version of the rescaled proximal method. We also present a pure primal method. The proposed proximal method has as distinctive feature the possibility of allowing inexact inner step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 240  شماره 

صفحات  -

تاریخ انتشار 2015